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Wideband Modeling of Arbitrarily Shaped E-Plane
Waveguide Components by the “Boundary
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Abstract— The boundary integral-resonant mode expansion
method is used for the solution of the eigenvalue problem involved
in the determination of the poles and the residues of the Y -
parameters of arbitrarily shaped E-plane waveguide junctions.
Using this method, the frequency response and its sensitivity
to deformations of the boundary can be calculated much faster
than by other more conventional methods for arbitrary shapes.
Therefore, the described algorithm is eligible for setting up very
efficient CAD tools to produce optimized designs of complex
E-plane components in reasonable times. Some examples demon-
strate the efficiency of the method in the modeling of components
of practical interest.

I. INTRODUCTION

AVEGUIDE components of unusual shapes are often

attractive to fulfill many design requirements, such as
small-size or high-power capability. Anyway, the choice of
possible shapes is limited by the fact that the available CAD
tools either are restricted to structures that can be segmented
into parts of very simple geometry or are not fast enough to
obtain optimized designs in reasonable times.

In a recent paper [1], we presented a very efficient field-
theoretical method for the wideband modeling of arbitrarily
shaped H-plane junctions among rectangular waveguides. This
method has the distinguishing feature of yielding the Y-
parameters in the form of a pole expansion in the frequency
domain. It is based on the solution of a 2D eigenvalue problem
carried-out by the “Boundary Integral-Resonant Mode Expan-
sion (BI-RME) Method,” a denomination recently introduced
to indicate a general procedure to solve different eigenvalue
problems arising in electromagnetic theory [1]-[6]. Though the
eigenvalue problem could be solved by standard methods (e.g.,
the FEM), the use of the BI-RME method results in a much
shorter computing time, thus allowing a very fast modeling
of H-plane components. This paper describes the extension
of the BI-RME method to the case of E-plane components.
This extension is not trivial since it entails some theoretical
complications, due to the different boundary condition.

As in the case of H-plane components, the BI-RME method
yields—with a negligible computational effort—the variations
of the poles and the residues of the Y -parameters caused by
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small deformations of the side walls. This possibility, together
with the intrinsic rapidity of the algorithm, can be exploited to
implement fast optimization procedures or to set mechanical,
tolerances.

Incidentally, the eigenvalue problem considered in this work
is identical to that encountered in the determination of the TE
modes of a waveguide, a problem which has already been
treated in its vector form by an algorithm similar to the one
described in this paper [3]. Here, this problem is treated in
scalar form by a more efficient algorithm, which avoids some
spurious solutions at nominally zero frequency that affected
the previous version of the algorithm.

II. THEORY

A. Wideband Representation of the Admittance Parameters

Let us consider an arbitrary lossless E-plane component
containing a homogeneous, isotropic, nondispersive medium,
whose permittivities are ¢, g (Fig. 1). We have N terminal
waveguides of width W, operating in the dominant TE;q
mode. The cross-section of the structure is denoted by S, the
height and the length of the nth waveguide by H,, and L,
respectively. We assume

L,>W. (1)

By the same argument presented in [1] we can show that under
this assumption the Y -parameters can be approximated by the
pole expansion
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where m,n = 1,2, ---, N; ,,,, is the Kronecker index; n

is the characteristic impedance of the medium; k¥ = w./eu
is the wavenumber at the frequency w; k; is the resonating
wavenumber of the ith mode of the cavity obtained short-
circuiting the ports; the c-coefficients are given by

i = / o - Hi dA, 3)
A,

where A, is the surface of the nth port, B is the magnetic
vector of the TE;¢ mode of the nth waveguide and H, is the
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Fig. 1. An E-plane multiport waveguide component.

magnetlc vector of the ith resonant mode of the cavity. Both
H; and h are normalized to one in the cavity volume and
in A, respectively.

As discussed in [1], the approximation (2) is acceptable
if & does not exceed the value kpn.x of the wavenumber
at the maximum operating frequency of the waveguides.
Furthermore, the approximation is more accurate the longer the
terminal waveguides are, and it is adequate for most practical
purposes, even for the minimum lengths allowed by (1).

The only cavity modes that are coupled to the TE,( mode of
the waveguides are the TE-to-z resonant modes that depend
on z by the factor sin (mwz/W). Representing the magnetic
vector of the cavity modes by a Hertz potential of the type
¢(z, y) sin(rz/W) and introducing the expression of P,
we easily find

.

= V1, ds 4
Xifo H, T '

where s (see Fig. 2) denotes a coordinate taken on 95 the
integration is performed over the segment %,, corresponding to
the nth port; x, and 1; are the ith eigenvalue and eigenfunction
of the equation

V2 +x*p =0 (x#0) inS (5)
% =0 - ondS (6)
/ ¥?dS =1 7)
s
and the resonating wavenumber &, is given by
T2
¢+ (7) - ®

The eigenfunctions are continuously differentiable to all orders
inside S. On the boundary, dv/Js may diverge at the reentrant
edges of S.

The basic problem to be solved for modeling a particular
structure by (2) is the determination of a sufficient number of
the lowest-order eigensolutions of (5). Note that this problem
is identical to that encountered in the determination of the TE
modes of a waveguide of cross-section S.

B. Integro-Differential Formulation of the Eigenvalue Problem

The domain of ¢ is extended from S to a fictitious rectangu-
lar domain 2 including S (Fig. 2) and the original eigenvalue
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Fig. 2. The cross-section of the component of Fig. 1 embedded in the
rectangular domain €2. The ports 31, 39, X3 are closed by electric walls.

problem is replaced by the “enlarged problem”

V2 +x2p =0 x#0 inQf ©)
g—z =0 on ¢ and 992 (10)
¥l =1 (11

where 0 = g1 Uoga U+ --Uok is the part of 35 not coincident
with 8Q; QF represents the domain  deprived of o; and
|-l denotes the norm of the real space L£2(£2). The enlarged
probiem is equivalent to the joint formulation of (5)—~(7) and
of the analogous problems for the domains Sy, Sy, ---, Sk
(see Fig. 2). Therefore, it admits two classes of solutions: the
“internal” ones, that correspond to the eigensolutions of (5)—(7)
in S and are zero in Sq, Ss, ---, Sk the “external” ones,
that differ from zero in one of the regions Sy and are zero
elsewhere. Since both classes of solutions differ from zero in
one region only, their normalization in §2 is equivalent to the
normalization in that region. In spite of the presence of the
useless external solutions, considering the enlarged problem
rather than the original one is convenient, because it can be
solved by the BI-RME method.
Using the divergence theorem, it is easily shown that
(9)—(11) imply
=0 (12)
where the overline denotes the mean value in Q. Furthermore,
both the internal and the external solutions are continuously
differentiable to any order in QF, discontinuous at ¢ and, due
to (10), with a continuous normal derivative. Therefore, by
denoting quantities taken on the external and internal side of
o with the superscripts + and —, we have

Pt —yT =—f(s) (13)

F s -
= =0 (14
Vit — V2T =x%f(s) (15)

where s is taken on ¢ and f is some function representing
the discontinuity of 1. Note that, due to the singularity of
0¥ /s, this function varies very rapidly in the proximity of
the points where the tangent to o changes abruptly.
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TABLE 1
GREEN'S FUNCTIONS
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where: Xm = % [a:—(m+ -2-)a—(—1)m(a:'— %)] Y= %(yiy') TE = cosh X, — cosYE
z,y and ', y' are the coordinates of the observation and the source points, respectively
o and b are the lengths of the sides of (2. The series converge more rapidly if a > b.

As discussed below, all the said features of the solutions are
included in the following representation of 1

,(l):_/ BFO('Tv Y; sl) f(s')ds'

on’
B
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+x° ¢>—/ MREL ) fiyas| e
N [}: o

where ¢ represents a zero-mean function, satisfying the Neu-
mann boundary condition on 952, continuously differentiable
to all orders in 97 and to the second order, at least, on o Fy
and F are the Green’s functions that satisfy

ViR =6z —3)6(y — ') + 1

17)
ab
ViF, =—F, (18)
JdFy OF
79-;_ ——8? = 0Oon 39

In (16), the notation used for the normal derivatives indicates
they are taken with respect to the coordinates of the source
point, that is placed on ¢ at the coordinate s'.

The representation (16) fulfills the requirement (12) because
¢ and the Green’s functions have zero mean. It satisfies (13)
and (14) because the integral denoted by Uy represents the
harmonic potential generated by a “double layer” of density
f located on ¢ and because the other integral (which satisfies
V2U; = —Up) is continuously differentiable to the first order.

Furthermore, (15) is verified as well, because
Vi3 = x*(Uo + V?¢) (20)

where V2¢ is continuous and x2Uj has the right discontinuity.

Equations (9) and (10) are converted into two integro-
differential equations, substituting (16), (20), and using the
identity (see Appendix A)

. / s, o) 2 (1)
where G satisfies
VA6 =~6(z —a")8(y — ) (22)
G =0 ondN (23)
We obtain
V2 + x* [¢> — / ail(g%y;i/z 7(s) ds’} =0 inQ (24
o / ) s’
+x° [an i %ﬂs’)ds’] =0 ono (25)

The Green’s functions Fy, Fy, G can be easily found in
the form of eigenfunction expansions (see Appendix A).
The expansions of Fy and G can be converted into rapidly
convergent one-index series. The same transformation—which
is impossible for F1—can be performed for the components
of the dyadic VV'Fy, from which we obtain 82F; /On On' =
71 VV'F; - i, These series are reported in Table 1. Note that
the terms with m = 0 include the logarithmic singularities of
the Green's functions.

The solution of the integro-differential equations (24) and
(25) constitutes a linear eigenvalue problem in the unknown
functions f and ¢. Adding the specification x # 0 [see (9)]
is necessary, because it is evident that the said equations are
verified identically by spurious solutions with x = 0, ¢ = 0,
and f constant on each line o4, 092, ---, 0k.
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Furthermore, the normalizing condition (11) requires (see
Appendix B)

// 83 8gi)ddl

+/ |VV26|% dQ2 = X2 (26)
Q
C. BI-RME Representation of v and V%)
We can represent ¢ and V2¢ by the Fourier series
¢ = Z apqPpq 27
Pq
V== apgX Ppg (28)
D.q
where the a,, are unknown coefficients and
2 — bop — b0 PR qmy
D,y = W cos == cos = (29)
prN\? | (qm\?
= (5) +(5) 30

The series converge uniformly due to the continuity of ¢ and
V2.

It is noted that ®,, and A,, are related to the resonant
modes of the rectangular box of cross-section {2 in the same
way as the eigensolutions of (5)—(7) are related to the resonant
modes of the short-circuited structure. For this reason, (27)
is the “resonant mode expansion” of ¢ and the expressions
obtained by substituting (27) and (28) in (16) and (20) are the
“BI-RME representations” of v and V21); in fact, they consist
of Boundary Integrals and Resonant Mode Expansions.

D. Discretization

The resonant mode expansions are approximated retaining
the first M terms. Due to the smoothness of ¢, it is expected
that a reasonably small number of modes will be sufficient
to represent the lowest-order eigenfunctions of the enlarged
problem with good accuracy. On the other hand the part of the
eigenvalue spectrum that must be calculated accurately must
extend above k..., in order to evaluate the relevant terms
of the pole expansion (2) with adequate precision. Therefore,
by denoting the largest resonant wavenumber of the retained
modes with Apax, the number M is chosen in such a way as
to have

Amax 2 Ckmax (32)

where ( is a parameter larger than one. The smallest allowed
value of ¢ has to be determined experimentally (see Section
ITI). After truncation (27) and (28) can be written as
¢ =dta
Vip=—-PA%a

(33)
(34)
where ® and a are M -dimensional vectors including the func-

tions ®,, and amplitudes a,, pertaining to the retained modes,
A is the diagonal matrix consisting of the corresponding
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wavenumbers )\, and the superscript ¢ denotes the transpose.
Due to the orthogonality and the normalization of the ®,, we
have

(@, @0 =1 (35)
where I is the M x M unit matrix and the brackets represent
the inner product of L£5(Q).

The unknown function f is approximated by

+Zbup

where {wy} is a set of window functions (wy, = 1 in oy, and
zero elsewhere); {u,} is a set of subsectional basis functions,
with support included in either element o, and with zero
mean-value; c, and b, are unknown coefficients. In matrix
form we can write

K

f= crwi(s
k=1

f=wic+u'b (36)
where the vectors w, u include the functions wy, v, and the
vectors ¢, b include the unknowns ¢ and b,.

Equations (24) and (25) are discretized using Galerkin’s
method, i.e., testing the first equation by the functions &,
and the second by the functions %, and wy. Due to (35),
considering the eigenfunction expansion of F} (see Appendix
A), from (24) we obtain

—A%a+x*la+ A™*(Rb+Sc)] = (37
where
R = / utd (38)
S = /U O wtds. (39)
Testing (25), we obtain
Cb + x*(Rfa— Lb —Tc) =0 (40)
x2(S*a - T'b — Wc) =0 (41)
where
ds 8 /
L= /U i %ﬁ—) u(s)ul(s') dsds’ (43)
_ 82F1(S 8/) ’ /
T = / / L) u(sywi(s) dsds’  (44)
O?Fy(s, s i ,
W = / / “onan w(s)w'(s')dsds (45)

(the expression of C is obtained integrating by parts with
respect to s and observing that the oy are either closed lines
or open lines with extremes on 952, where G = 0).
Equations (37), (40), and (41) are satisfied identically by
x =0,a=20,b =0, and by any vector c. These solutions
correspond to the spurious ones discussed at the end of Section
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II-B. As already stated, they are removed by the assumption
x # 0. With this assumption (41) implies

c=W(S'a—T'b). (46)

The matrix W~! can be deduced directly from the areas
S, 81, 82, -+, Sk shown in Fig. 2; in fact we have (see
Appendix C)

- onr 1
W e = —+= =1, .-, K.
( )hk Sk; + g h7 k 3 ) K (47)
Eliminating ¢ from (37) and (40), we finally obtain
AS 0 a A D a
(v o)) 2o 3)() @

where

A=A"-sSW 'S
B=L-TW'T’
D=SW'T'-R

The matrices on both sides of (48) are symmetric and the one
on the left-hand side is positive definite, due to the positive
definiteness of C (see Appendix D). Then (48) has M + P real
eigenvalues and eigenvectors, which can be determined using
very efficient and reliable library routines [7]. Furthermore, it
is easily verified that the normalizing condition (26) is fulfilled
if the eigenvectors satisfy

a‘A% 4+ biCb = x2. (49)
It is expected that the smallest eigenvalues (that correspond
to the most slowly-varying eigenfunctions ¢) are the most
accurate approximations for the eigenvalues of (24) and (25);
in fact, (33) approximates ¢ by a band-limited function, so that
the approximation is the better the smaller x in comparison
with Apax. For the same reason, the solutions with x > Apnax
are meaningless.

E. Selection of the Internal Modes

Let x, a, b denote a solution of (48). From (20) and (34)
we obtain

izxz[if(;)‘*" aFo(s S)f( " ds

V2 — ®'A%

(<2

where ® is taken on o at the coordinate s; f is obtained
from (36) and (46); the principal-value integral originates from
the fact that “double-layer potential” U, [defined in (16)]
is evaluated at o. The internal solutions are identified by
computing the norms ‘

ht =V,
~ =Vl

and by checking the condition A~ > h*; in fact, in these
solutions V24T is nominally zero (for details see [1], Section
11I-C).

Inaccurate solutions that cannot be clearly classified as
either internal or external are likely to occur in the range of
eigenvalues close t0 Apax. Increasing the number of the basis
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functions w,, and the number of the resonant modes [i.e., the
coefficient { in (32)], the accuracy is increased and the range
of inaccurate eigenvalues can be pushed well-above kpax.

F. Calculation of ¢y,

Let xi, a®, b® correspond to the ith internal solution of
the enlarged problem, i.e., to the eigenfunction , appearing
in (4). From (15) and (20) we obtain

V34, =

_X'L fl
IF, )
% [/ ————0(‘9 ) (o) ds' — 8'A% | on 00

ono

“where
fi=w'c® +u'b® (50)
and ¢(® is obtained from (46). Therefore we have
~xlHne,) + Pl i, €0
K,V H "
") x [Vac(i)glb(z) — A% s con
e (51)

where we introduced the row-vectors

P, —/ u'ds

/ /aFoss) ) ds
r%:/ ' ds

- [ o s

__T; (31~52a 7SK)

(the last equality is demonstrated in Appendix C).

ITI. EFFECT OF A DEFORMATION OF ¢

A deformation of ¢ perturbs the eigenvalues and the eigen-
functions of (5) and changes the frequency response of the
component, due to the perturbation of the poles and the
residues of the Y -parameters. Evaluating the effect of a slight
deformation is important both for setting the mechanical
tolerances and for including the algorithm in a CAD tool
performing the optimization of the response by subsequent
deformations of o.

Let us consider a perturbation which displaces a generic
point 7 along the normal 7 from a smooth part of ¢ 10 a new
position

7(s) —vO (s) 7 (s)

where v is a small parameter and O is a continuous function.
Due to perturbation, the quantities &;, ¢,, assume new values
R4, Cna.» that are obtained from (4) and (8) by replacing y,
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and 1; with the corresponding perturbed quantities. These
quantities can be obtained from the perturbation formulas
(9.2.52), (9.2.53) given in [8]. After some manipulations, not.
reported for reasons of space, we obtain

2 = k2 + v X2 qn — pu) + O0) (52)
eni = QMY > aujcaj + 0O (53)
J
where
s = [ Ot do (54)
Dig = L / @ad}z % do
X.Xj Jo Os 0s
a,; =1
20 .
=V X quz Xl);]p 9 (i # _])
Xi — Xj

Qi = Z Cl?] -V Z AipQygfpg (55)

i Py

On the other hand, due to (13), ¢ can be replaced by f in
(54) and (55) (remember that ¢)T = 0 in internal solutions).
Then, using (50) we obtain
Q= bO' X b 4 Oy W

+ by @ 4 @7 )

b®O'X bO)
Py =—"""_—""

XiXj

where we introduced the matrices

X:/ O uulds 56)
du out
[ [
X—/U@as s ds 57)
Y:/ Ouwlds (58)
7 - / 6 ww' ds (59)

The calculation of these matrices is trivial, so that the extra
computational work required for evaluating the effect of a
perturbation is negligible.

IV. IMPLEMENTATION AND TESTING OF THE ALGORITHM

The boundary ¢ is approximated by one or more polygonals,
whose sides are subdivided into segments no longer than
7/ (2Amax ). The basis functions u, are zero-mean piece-wise
parabolic splines defined over four adjacent segments (see
Fig. 3). As shown in the same figure, special functions defined
over only three segments are used at the extremes of the
lines oy that touch 9€2. A denser segmentation is used near
the edges, to better approximate the rapid variations of f.
Note that the number of the segments increases with Ay,
so that increasing the parameter { not only increases the
number of resonant modes [see (32)] but also the number of
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aQ

Fig. 3. Zero-mean piece-wise parabolic splines used as basis functions. a is
a function defined over four segments and b is a special function defined at
an extreme of o.

basis functions. For this reason, the value of ¢ is expected to
determine the accuracy of the calculation.

In the calculation of the matrices C, L, T, R, S we evaluate
all integrals using Gauss quadrature formuias, except for the
entries of C, L, T that involve overlapping basis functions.
As usual in the boundary element method, in these cases we
evaluate the contributions from the singularities of the Green’s
functions analytically, and the contributions from their regular
parts numerically.

Once the matrices A, B, D have been formed, the eigen-
value equation (48) is solved using LAPACK routines [7].
Then the selection of the internal modes is performed, calcu-
lating the norms i and A~ as discussed in [1].

After the resonant wavenumbers «, and the coefficients
¢n, have been calculated, the values of the Y-parameters are
evaluated by (2) at many frequencies in the operating band of
the waveguides and the S-parameters are deduced from them.

It is noted that in cases of structures with one or two
symmetry planes the algorithm for the mode calculation can be
modified to take advantage of the symmetry. This modification
is not discussed for brevity.

As in the case of H-plane components [1], we tested the
algorithm using a simple waveguide section as a benchmark.
In particular, the test permitted us to find the effect of the
choice of the parameter ¢ in (32). We verified that the accuracy
increases with increasing , that demonstrates the convergence
of the algorithm. Furthermore, we observed that the accuracy
was acceptable from values of ¢ as low as 2.5. On the other
hand, since the CPU time increases rapidly with ¢, a good
trade-off between accuracy and time is to choose ¢ in the range
2.5-4. Note that this range is the same as that considered in
the H-plane case [1].

The algorithm described in this paper and the one de-
scribed in [1] were implemented in a computer code, named
ANAPLAN-W [9].

V. EXAMPLES AND COMPARISON
WITH THE FINITE ELEMENT METHOD

We report the results of some calculations to validate the
algorithm and to show how it can be used in the design
of components of practical interest, obtaining a very good
accuracy with a short computing time (the reported CPU times
refer to a SUN SparcStation 10).

Fig. 4 refers to a 90° mitered E-bend, in the case of a
diagonal mitering (d/b = 0.707) and in the limiting case of
no miter (d/b = 1.41). Using ¢ = 2.5, the frequency response
over the whole band was obtained in 3.1 s and 2.3 s, in the
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d/b=141

d/b=0.707

b

-30 T T T
1.1 1.3 1.5 1.7 f/fe

Fig. 4. Normalized frequency response of a mitered E-plane 90° bend. Solid
lines, this method; circles, computed values from [10].

port 2 | port 4
d, dg d
] > > I Hll‘
e s o e
> > |
d, d,| |b, |b, H
port 1 | port 3

Fig. 5. Geometry of the 4-db coupler in WR-75 waveguide considered in
[11]. The dimensions (in mm) are: H = 9.52; t = 6.16; by = 9.52;
bo =9.72;d1 = 1.7, dy = 7.34; ds = 3.4;dy = 6.26; and d5 = 4.53.
The width of the waveguides is W = 19.05 mm.

two cases, respectively. Our results compare very well with
the mode-matching results reported in [10].

The second example refers to the 4-db branch-guide coupler
of Fig. 5. The dimensions (sec caption) were taken from
[11]. Fig. 6 shows an excellent agreement between our results
and those reported in [11]. Considering the double reflection
symmetry and using ¢ = 3.5, the CPU time was only 56 s for
the complete frequency response.

The last example concerns the analysis of the rat-race
directional coupler (see Fig. 7) recently considered in [12].
Fig. 8 shows an excellent agreement between our results and
those reported in [12], obtained by the boundary contour
mode matching method. The experimental results reported
in the same figure differ slightly from the computed ones,
presumably due to losses. Using ¢ = 3.5 and exploiting the
reflection symmetry, the calculation of the complete frequency
response required 195 s. It is noted that in this example the
CPU time was longer than in the previous ones. The reason is
that no part of the boundary fits with 02, so that ¢ coincides
with the whole boundary and a large number of basis functions
must be considered.

The eigenvalue problem (5) could be solved by many
different algorithms, the most classical one being the finite
element method (FEM) [13]. For this reason, we carried out
many calculations using both the FEM and the BI-RME
method, to check the practical advantage of our approach. To
minimize the CPU time, in each calculation the refinement
of the FEM mesh was just sufficient to obtain an accuracy
comparable to that of our method, and symmetries were
exploited, whenever possible. Furthermore, the sparsity of the
FEM matrices was exploited using the Lanczos’ algorithm [14]
to solve the eigenvalue problem.
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'SOT T T T
105 iR 115 12

12.5 GHz

Fig. 6. Scattering parameters of the coupler of Fig. 5. Solid lines, this
method; crosses, computed values from [11}; and circles, measured values
from [11].

ke T

*
|
RZ;

Fig. 7. Cross section of the E-plane rat-race 3-db directional coupler con-
sidered 1n [12]. The dimensions (in mm) are: H = 7.9; Ry = 5.35; and
Ry = 10.875. The width of the waveguides is W = 15.799.

12.4 13.2 GHz

12.8

13.6

Fig. 8. Scattering parameters of the rat-race of Fig. 7. Solid lines, this
method; crosses, computed values from [12]; and circles, measured values
from [12].

Though, in some cases, we found that the two methods
required comparable times, in many cases, the use of the
BI-RME method resulted in a typical time saving of one
order of magnitude. The loss of efficiency of the Lanczos’
algorithm was not related to the complexity of the component,
but, seemingly, to the presence of clusters of eigenvalues. Note
that these clusters are likely encountered in the analysis of
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practical components (e.g., filters with closely spaced poles).
Incidentally, clustered eigenvalues do not create troubles if
the eigenvalue problem is solved by the procedure described
in [13]; the CPU time, however, increases dramatically. For
instance, in the analysis of the coupler of Fig. 5, which
required the calculation of about 150 eigensolutions, the CPU-
time (referred to a SUN SparcStation 10) was 100 min with
the FEM, exceeding by two orders of magnitude the BI-RME
CPU-time. In conclusion, solving the eigenvalue problem
by our method rather than by the FEM is normally very
convenient.

The FEM is also used in commercial e.m. solvers, €.g.,
HFSS [15]. Of course, the advantage of our specialized method
over general purpose e.m. solvers is out of question. For
instance, the time required by our code ANAPLAN-W for the
calculation of the whole frequency response reported in Fig. 6
was about 1/6 of the time required by HFSS for calculating
the S-parameters at a single frequency.

VI. CONCLUSION

The reported theory is a bit complicated, but it results in
a very efficient algorithm for the wideband analysis of E-
plane components. The efficiency depends on the possibility of
determining the poles and the residues of the Y -parameters by
the solution of a linear matrix eigenvalue problem, involving
matrices of reasonably small order. The reported examples
demonstrate that the wideband modeling of complicated struc-
tures can be catried out in times shorter by more than one order
of magnitude, compared to those required by standard FEM
software.

Either for its rapidity and for the possibility of a quick
evaluation of the effect of a deformation on the frequency
response, the method is ideally suited for use in a CAD
code, together with an optimization routine. Using a standard
workstation, optimized design requiring many tens or hundreds
of subsequent analyses can be obtained in reasonable times.
This justifies the effort to write a new BI-RME based code,
instead of merely using a standard e.m. solver.

APPENDIX A
DEDUCTION OF (18) AND EIGENFUNCTION
EXPANSIONS OF THE GREEN’S FUNCTIONS

Let us consider the vectors

ZTE _ Yz X Vo,
rqg —
Apg
Y S 2T
€pg =
Hpq

where @,,, Apq are given by (29), (30) and

2
Ty = [ sin Z—’Zﬁ sin 51%
p 2 q7r 2
o =y () + ()

pvq:1927”'
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It is well known that these vectors constitute a complete or-
thonormal basis for representing any square-integrable vector
field defined in 2. This implies the “completeness relationship”

Z —»TE —»TE —»/) +Z —ATM

M) ey = T 6(7 - 7)

Eond
where 1 denotes the unit dyadic and 7, ¥/ are points of €.
From this equation we obtain

!/
g x vy 3 el D 0l ) g
D, q qu
Fo
U (7)Y
\vAvdi Z PQ(T)z pq<T ) 7—,'# 7! (Al)
p,q Hpq
G

where the series are identified with Fy and G, because they
are the solutions of (17) and (22) in the form of eigenfunction
expansions. Then we can also write VV'Fy = i, x VV'Gx 4.
and, therefore, placing the source point at the point s’ of ¢

OFy (7, 8
\Y —%%5—) =i, x VV'G(F, §') - it, x 7
. AG(F, §)
S XN

Then. looking at the definition (16) of U,, we have

VUo () =1, x v/ a—G;TSZf(s/)ds'

o)

=—1,xV / G(r, §') (¢ o) (A2)

Finally, (21) is obtained from (A2) allowing 7 to tend to the
point s of ¢ and taking the normal component of both sides.

It is also noted that, according to (18), the eigenfunction
expansion of F} is

Fl:Z(I’P_q(g)%I)Pq_(F/_)

P, q Pq

APPENDIX B
NORMALIZATION OF ¢ AND f

Equation (9) implies (and is implied by)

P =~x"V%
X_4V2v2'l/1

Therefore, the normalizing condition (11) is equivalent to
__<v2/¢7 v2v2,¢>ﬂ — XG

where (, ) denotes the inner product of L (). Furthermore,
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due to (20) and because V2Uy = 0 in 2f, we have
—(V3p+ Uy, V2V2¢)q = x*

This equation is converted into (26) observing that, due to the
Neumann boundary conditions satisfied on 3Q by Uy, and V¢
and due to the continuity of V¢, V2¢/dn and U, /dn on
o, we have

—(V2, VEV2$)q = / V26202
Q

“(UO,V2V2¢)> :/(U— U+) V2¢

ot

The last integral is converted into the double integral in (26)
substituting the expression of V2¢ obtained from (24), using
(25) and integrating by parts with respect to s.

ds

ApPPENDIX C
EXPRESSIONS OF W~1 AND v,,

From (45) we have

_ o [ o
th~£hd85; oka'd

- / ds—aa— VPR ) s,

:/ ds—/s Fo(7, ') dS}

[ s [ E )

:-/ st [ VR ) s,

1
7F—7" — —{dS,dSh
LL[ )=o) a5

SLS
= Sh Onx — Zbk

Due to the particular form of W, the inverse can be obtained
by the Sherman—-Morrison formula [16]. The result is (47).
The kth element of the vector v,, is

/ / 8F0d’ / ds/s V2 Fy(F, 7') dS,
k
— o i
/n ds /Sk abdsk

_ _HnSk
ab

because 7 € X, is outside of Si.
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APPENDIX D
POSITIVE DEFINITENESS OF THE MATRIX C

Substituting the eigenfunction expansion of G [see (Al)] in
(42), we immediately obtain

3 Gty =Y (Db

=1 y=1 p,g \i=1

®pq i

g 05

which is positive for any b # 0.
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