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Waveguide Components by the “Boundary
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Abstract— The boundary integral-resonant mode expansion
method is used for the solution of the eigenvalue problem involved
in the determination of the poles and the residues of the Y-
parameters of arbitrarily shaped E-plane waveguide junctions.
Using this method, the frequency response and its sensitivity
to deformations of the boundary can be calculated much faster
than by other more conventional methods for arbitrary shapes.
Therefore, the described algorithm is eligible for setting up very
efficient CAD tools to produce optimized designs of complex
E-plane components in reasonable times. Some examples demon-
strate the efficiency of the method in the modeling of components
of practical interest.

I. INTRODUCTION

wAVEGUIDE components of unusual shapes are often

attractive to fulfill many design requirements, such as
small-size or high-power capability. Anyway, the choice of
possible shapes is limited by the fact that the available CAD
tools either are restricted to structures that can be segmented
into parts of very simple geometry or are not fast enough to
obtain optimized designs in reasonable times.

In a recent paper [1], we presented a very efficient field-
theoretical method for the wideband modeling of arbitrarily
shaped H-plane junctions among rectangular waveguides. This
method has the distinguishing feature of yielding the Y-

parameters in the form of a pole expansion in the frequency

domain. It is based on the solution of a 2D eigenvalue problem

carried-out by the “Boundary Integral–Resonant Mode Expan-
sion (BI–RME) Method,” a denomination recently introduced
to indicate a general procedure to solve different eigenvalue
problems arising in electromagnetic theory [1]–[6]. Though the
eigenvalue problem could be solved by standard methods (e.g.,
the FEM), the use of the BI–RME method results in a much
shorter computing time, thus allowing a very fast modeling
of H-plane components. This paper describes the extension
of the BI–RME method to the case of E-plane components.
This extension is not trivial since it entails some theoretical

complications, due to the different boundary condition.

As in the case of H-plane components, the BI-RME method
yields—with a negligible computational effort-the variations
of the poles and the residues of the Y-parameters caused by
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small deformations of the side walls. This possibility, together
with the intrinsic rapidity of the algorithm, can be exploited to
implement fast optimization procedures or to set mechanical,
tolerances.

Incidentally, the eigenvalue problem considered in this work
is identical to that encountered in the determination of the ‘TE

modes of a waveguide, a problem which has already been

treated in its vector form by an algorithm similar to the one
described in this paper [3]. Here, this problem is treatedl in
scalar form by a more efficient algorithm, which avoids some
spurious solutions at nominally zero frequency that affected
the previous version of the algorithm.

II. THEORY

A. Wideband Representation of the Admittance Parameters

Let us consider an arbitrary lossless E-plane component
containing a homogeneous, isotropic, nondispersive medium,
whose permittivities are c, ~ (Fig. 1). We have N terminal
waveguides of width W, operating in the dominant TEIO
mode. The cross-section of the structure is denoted by S, the
height and the length of the nth waveguide by Hn and i2n,
respectively. We assume

L. > W. (1)

By the same argument presented in [1] we can show that under
this assumption the Y-parameters can be approximated by the
pole expansion

(2)

where m, n = 1, 2, . . . . N; hmn is the Kronecker index; q
is the characteristic impedance of the medium; k = w@

is the wavenumber at the frequency u; K,i is the resonating
wavenumber of the ith mode of the cavity obtained short-

circuiting the ports; the c-coefficients are given by

cn~ = Jin,<idAn (3)
A.

where An is the surface of the nth port, ~m is the magnetic
vector of the TEIO mode of the nth waveguide and ~, is the
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Fig. 1. An E-plane multiport waveguide component.

magnetic vector of the ith resonant mode of the cavity. Both

fi~ and ~m are normalized to one in the cavity volume and
in An, respectively.

As discussed in [1], the approximation (2) is acceptable
if k does not exceed the value k~.X of the wavenumber
at the maximum operating frequency of the waveguides.
Furthermore, the approximation is more accurate the longer the
terminal waveguides are, and it is adequate for most practical

purposes, even for the minimum lengths allowed by (l).
The only cavity modes that are coupled to the TE1o mode of

the waveguides are the TE-to-z resonant modes that depend
on z by the factor sin (zz/lV). Representing the magnetic

vector of the cavity modes by a Hertz potential of the type

O(Z, y) sin (7r2/~)

we easily find

c ~t =

where s (see Fig. 2)

and introducing the expression of ~n,

1

/
V2@, ds (4)

Xifiz m En

denotes a coordinate taken on 8S; the
integration is performed over the segment En corresponding to

the nth port; x, and ~; are the zth eigenvalue and eigenfunction
of the equation

V2@+X21+!I=0 (x #O) inS (5)

alJ~.o on 8S (6)

/
~2dS=l (7)

s

and the resonating wavenumber ri, is given by

.,=/x,+($)2. (8)

The eigenfunctions are continuously differentiable to all orders
inside S. On the boundary, i3@/~s may diverge at the reentrant
edges of S.

The basic problem to be solved for modeling a particular
structure by (2) is the determination of a sufficient number of
the lowest-order eigensolutions of (5). Note that this problem
is identical to that encountered in the determination of the TE

modes of a waveguide of cross-section S.

B. Integro-Dl~erential Formulation of the Eigenvalue Problem

The domain of@ is extended from S to a fictitious rectangu-

lar domain Q including S (Fig. 2) and the original eigenvalue

Fig. 2. The cross-section of the component of Fig. 1 embedded in the
rectangular domain Q. The ports X1, X2, X3 are closed by electric walls.

problem is replaced by the “enlarged problem”

aj
Zln
—=0 on Q and 8Q (lo)

11’0110‘1 (11)

where m=a1Um2U. . . U fTK is the part of 8S not coincident
with WI; Of represents the domain 0 deprived of o; and

II.IIQ denotes the norm of the real space L2(Q). The enlarged
problem is equivalent to the joint formulation of (5)–(7) and
of the analogous problems for the domains S1, S2, . . . . SK
(see Fig. 2). Therefore, it admits two classes of solutions: the
“internal” ones, that correspond to the eigensolutions of (5)–(7)
in S and are zero in S1, S2, . . . . SK; the “external” ones,

that differ from zero in one of the regions sk and are zero

elsewhere. Since both classes of solutions differ from zero in

one region only, their normalization in Q is equivalent to the
normalization in that region. In spite of the presence of the
useless external solutions, considering the enlarged problem
rather than the original one is convenient, because it can be
solved by the BI–RME method.

Using the divergence theorem, it is easily shown that
(9)-(1 1) imply

$=(J (12)

where the overline denotes the mean value in Q. Furthermore,

both the internal and the external solutions are continuously
differentiable to any order in flf, discontinuous at c and, due
to (10), with a continuous normal derivative. Therefore, by
denoting quantities taken on the external and internal side of
~ with the superscripts + and —, we have

?)+ - ?/- = -f(s) (13)

(14)

(15)

where s is taken on o and f is some function representing
the discontinuity of ~. Note that, due to the singularity of
8@/8s, this function varies very rapidly in the proximity of
the points where the tangent to c changes abruptly.
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TABLE I
GREENS FUNCTIONS

G = -& ~ (-l)+ X2 + Z’2Fe=; +—– Z+r’+lz-z’l

m 2ab 2b
- + ~ ln(,T’+7’- -Wnl)~me

m.—co m.—cc

?)2F1 $+xr–lz-dl xc{ 1—= -—-—
axad 2b S (-l)m ~(4~iT__e-21xm’)+ I Xm \ (C”sy+;;-’xm’ + cosy - -.-lxml)]ab 87 m T;m.-m

(32FI 1
g x. (~ “;!-)

a2F1—. —
&@ 87T m m (

1 ~ (-l)~xm “;y+ , “;:-
ayl%t = –G

m. -cc *.—m m m )

a2Fl 1 -

~[
k:-lxml

m (

COSY+ - e-lxrnl _ ~~sy– – e–lxml
—= —
ayayl 87r T$

m.—m
T; )1

where: Xm ==: [x- (m+ ;). - (-1)~(1+- ;)] Y* = ;(yiv’) T~ = cosh Xm – COSY*

C, IJ~d ~’, Y’ = the coordinates of the observation ~d the source points, respectively

a and b are the lengths of the sides of O. The series converge more rapidly if a > b.

As discussed below, all the said features of the solutions are Equations (9) and (10) are converted into two integro-
included in the following representation of @

?/)=-

[
aF”(;y“)f(s’) (L$’

.,7

1

where ~ represents a zero-mean function, satisfying the Neu-
mann boundary condition on 80, continuously differentiable
to all orders in Qt and to the second order, at least, on a; F.

and F1 are the Green’s functions that satisfy

differential equations, substituting (16), (20), and using the
identity (see Appendix A)

where G satisfies

V2G = –6(x – X’)$(y – y’)

G=O ondfl

We obtain

(22)

(23)

[/
v2fp+x2 f?– ~ 1’aF1($~’ “) ~(s’) ds’ = O in Q (24)

V2F”=–6(X – d) fs(7J– y’) + + (17) -:
/

df(s’) ~s,
G(s, s’) as,

V2F1 = –F. (18)

~Fo 8F1
[/

; @ ~2F1(s, S’)
—. OontX1 ‘x %– ~

~(S’) ds’
1

=0 ono (25)

th = an
an an’

(19) The Green’s functions Fo, F1, G can be easily found in

In (16), the notation used for the normal derivatives indicates
they are taken with respect to the coordinates of the source

point, that is placed on a at the coordinate s’.
The representation (16) fulfills the requirement (12) because

@ and the Green’s functions have zero mean. It satisfies (13)
and (14) because the integral denoted by U. represents the

harmonic potential generated by a “double layer” of density
f located on o and because the other integral (which satisfies
V2 U1 = – UO) is continuously differentiable to the first order.
Furthermore, (15) is verified as well, because

the form of eigenfunction expansions (see Appendix A).
The expansions of F. and G can be converted into rapidly

convergent one-index series. The same transformation—which
is impossible for F1—can be performed for the components
‘of the dyadic VVIFI, from which we obtain 82F1 Ian an’ =
ii. VV’F1 . ii’. These series are reported in Table I. Note that
the terms with m = O include the logarithmic singularities of

the Green’s functions.
The solution of the integro-differential equations (24) and

(25) constitutes a linear eigenvalue problem in the unknown
functions ~ and @. Adding the specification x # O [see (9)]

w.) = X2(UI)+ V2(I)) (2o) is necess~y, because it is evident that the said equations are
verified identically by spurious solutions with x = O, @ := O,

where V2~ is continuous and X2U. has the right discontinuity. and f constant on each line al, vz, . . . . ~R.
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Furthermore, the normalizing condition (11) requires (see

Appendix B)

C. BI–RME Representation of@ and V2~

We can represent ~ and V2q5 by the Fourier

where the aP~ are unknown coefficients and

series

p,q=o, l,...; (R fJ) # (m 0).

(26)

(27)

(28)

(29)

(30)

(31)

The series converge uniformly due to the continuity of @ and

Vzlj.
It is noted that @pq and APq are related to the resonant

modes of the rectangular box of cross-section Q in the same
way as the eigensolutions of (5)–(7) are related to the resonant
modes of the short-circuited stxucture. For this reason, (27)
is the “resonant mode expansion” of @ and the expressions
obtained by substituting (27) and (28) in (16) and (20) are the
“BI-RME representations” of ~ and V’@; in fact, they consist

of Boundary Integrals and Resonant Mode Expansions.

D. DiscretiZation

The resonant mode expansions are approximated retaining

the first A/l terms. Due to the smoothness of q$, it is expected

that a reasonably small number of modes will be sufficient

to represent the lowest-order eigenfunctions of the enlarged

problem with good accuracy. On the other hand the part of the

eigenvalue spectrum that must be calculated accurately must

extend above krnaX, in order to evaluate the relevant terms

of the pole expansion (2) with adequate precision. Therefore,

by denoting the largest resonant wavenumber of the retained

modes with Am.X, the number M is chosen in such a way as
to have

Am= > <~max (32)

where < is a parameter larger than one. The smalles~ allowed

value of < has to be determined experimentally (see Section

III). After truncation (27) and (28) can be written as

$ = $’. (33)

V2~ = –~tA2a (34)

where @ and a are M-dimensional vectors including the func-
tions @Pq and amplitudes aPq pertaining to the retained modes,
A is the diagonal matrix consisting of the corresponding

wavenumbers Apq and the superscript t denotes the transpose.

Due to the orthogonality and the normalization of the @P~ we

have

(@, @’)Q = I (35)

where I is the M x M unit matrix and the brackets represent
the inner product of L2 (Q).

The unknown function f is approximated by

K P

k=l pal

where {w~ } is a set of window functions (w& = 1 in u~ and
zero elsewhere); {UP} is a set of subsectional basis functions,
with support included in either element ISk, and with Zero
mean-value; Ck and bP are unknown coefficients. In matrix
form we can write

~ = W’C + utb (36)

where the vectors w, u include the functions w~, up and the

vectors c, b include the unknowns ck and bP.
Equations (24) and (25) are discretized using Galerkin’s

method, i.e., testing the first equation by the functions @Pq

and the second by the functions UP and wk. Due to (35),
considering the eigenfunction expansion of F1 (see Appendix
A), from (24) we obtain

–A2a + X’[a + A-J(Rb + Se)] = O,

where

/
R= ~utds

~ i3n

JS= ~w’ds.
~ an

Testing (25), we obtain

Cb+X2(Rta– Lb– Tc)=0

x2(Sta – Ttb – Wc) = O

where

c= HCTu

L=
//Uu

T= /’lmu
w=

//00

~u(s)~u’(s’)ds ds,G(s> S’) ~ —
(3s’

&Fl(s, s’)
6% th’

U(5) U~(S’) d.s d.s’

&Fl(s, s’)

t%aan’
U(S) Wt(S’) ds ds’

a2Fl(s, s’)

iln ih’
W(S) W’(S’) ds ds’

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(the expression of C is obtained integrating by parts with
respect to s and observing that the ok are either closed lines
or open lines with extremes on i3fl, where G = O).

Equations (37), (40), and (41) are satisfied identically by
x = O, a = O, b = O, and by any vector c. These solutions
correspond to the spurious ones discussed at the end of Section
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II-B. As already stated, they are removed by the assumption

x # O. With this assumption (41) implies

c = W–l(Sta – Ttb). (46)

The matrix W-1 can be
S, Sl, S2, . . . . SK shown
Appendix C)

deduced directly from the areas
in Fig. 2; in fact we have (see

(w-l)hk=*++ h,k=l, ... K. (47)

Eliminating c from (37) and (40), we finally obtain

K 3(3=X2($3(0 ’48)
where

A =A4 – SW-l St

B =L – TW-lTt

D =Sw-lTt – R

The matrices on both sides of (48) are symmetric and the one
on the left-hand side is positive definite, due to the positive
definiteness of C (see Appendix D). Then (48) has M+ P real
eigenvalues and eigenvectors, which can be determined using
very efficient and reliable library routines [7]. Furthermore, it
is easily verified that the normalizing condition (26) is fulfilled
if the eigenvectors satisfy

atA6a + btCb = X2. (49)

It is expected that the smallest eigenvalues (that correspond
to the most slowly-varying eigenfunctions ~) are the most
accurate approximations for the eigenvalues of (24) and (25);
in fact, (33) approximates #by a band-limited function, so that
the approximation is the better the smaller x in comparison
with &.X. For the same reason, the solutions with x > ~~ax
are meaningless.

E. Selection of the Internal Modes

Let x, a, b denote a solution of (48). From (20) and (34)

we obtain

‘2+*=x2FY+i8F$:s’)’(s’)ds’-@’A2al
where @ is taken on c at the coordinate s; f is obtained
from (36) and (46); the principal-value integral originates,from
the fact that “double-layer potential” U. [defined in (16)]
is evaluated at CJ. The internal solutions are identified by
computing the norms

and by checking the condition h– >> h+; in fact, in these

solutions V2q5+ is nominally zero (for details see [1], Section
II-C).

Inaccurate solutions that cannot be clearly classified as
either internal or external are likely to occur in the range of
eigenvalues close to &.X. Increasing the number of the basis

functions UP and the number of the resonant modes [i.e., the
coefficient < in (32)], the accuracy is increased and the range
of inaccurate eigenvalues can be pushed well-above k~ax.

F. Calculation of en,

Let xi, a(’), b(’) correspond to the ith internal solution of

the enlarged problem, i.e., to the eigenfunction ~, appearing

in (4). From (15) and (20) we obtain

v’+, =

( -X:fi on o

where

fi = ~tc(i) + ~tb(d

and c(’) is obtained from (46). Therefore

——

(50)

we have

if.Zn Eff

where we introduced the row-vectors

(the last equality is demonstrated in Appendix C).

III. EFFECT OF A DEFORMATIONOF o

A deformation of o perturbs the eigenvalues and the eigtm-
functions of (5) and changes the frequency response of the
component, due to the perturbation of the poles and the
residues of the Y-parameters. Evaluating the effect of a slight
deformation is important both for setting the mechanical
tolerances and for including the algorithm in a CAD tool
performing the optimization of the response by subsequent
deformations of cr.

Let us consider a perturbation which displaces a generic

point F along the normal ii from a smooth part of u to a new
position

where v is a small parameter and @ is a continuous function.
Due to perturbation, the quantities W, Cn, assume new values
k~, t~,, that are obtained from (4) and (8) by replacing X,
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and @ with the corresponding perturbed quantities. These

quantities can be obtained from the perturbation formulas

(9.2.52), (9.2.53) given in [8]. After some manipulations, not
reported for reasons of space, we obtain

i%;=/c:+Vx:(qit– Piz)+ 0(V2) (52]
-(1/2)

E.i = Q, x atj Cnj + 0(V2) (53)

where

(55)

On the other hand, due to (13), @ can be replaced by ~ in
(54) and (55) (remember that ~+ = O in internal solutions).
Then, using (50) we obtain

q,j = b(z)txb(~)+ b(z)ty#

+ b(~)tyc(~)+ ~(i)tz~(~)

b(~)txfb(~)
p,j =

XiXj

where we introduced the matrices

x=
/

@ Ulli ds (56)
u

J~@au~Xf = — ds
5 - as as

(57)

z=
/

~ WWt ds (59)
u

The calculation of these matrices is trivial, so that the extra
computational work required for evaluating the effect of a

perturbation is negligible.

IV. IMPLEMENTATION AND TESTING OF THE ALGORITHM

The boundary o is approximated by one or more polygonal,
whose sides are subdivided into segments no longer than

n/ (2~~~~ ). The basis functions UP are zero-mean piece-wise
parabolic splines defined over four adjacent segments (see
Fig. 3). As shown in the same figure, special functions defined
over only three segments are used at the extremes of the
lines uh that touch afl. A denser segmentation is used near
the edges, to better approximate the rapid variations of f.
Note that the number of the segments increases with ~~ax,
so that increasing the parameter < not only increases the
number of resonant modes [see (32)] but also the number of

Fig. 3, Zero-mean piece-wise parabolic splines used as basis functions. a is
a function defined over four segments and b is a special function defined at
an extreme of a.

basis functions. For this reason, the value of < is expected to

determine the accuracy of the calculation.
In the calculation of the matrices C, L, T, R, S we evaluate

all integrals using Gauss quadrature formulas, except for the
entries of C, L, T that involve overlapping basis functions.
As usual in the boundary element method, in these cases we

evaluate the contributions from the singularities of the Green’s
functions analytically, and the contributions from their regular
parts numerically.

Once the matrices A, B, D have been formed, the eigen-
value equation (48) is solved using LAPACK routines [7].
Then the selection of the internal modes is performed, calcu-

lating the norms h+ and h- as discussed in [1].
After the resonant waventtmbers ~z and the coefficients

cn~ have been calculated, the values of the Y-parameters are
evaluated by (2) at many frequencies in the operating band of
the waveguides and the S-parameters are deduced from them.

It is noted that in cases of structures with one or two

symmetry planes the algorithm for the mode calculation can be
modified to take advantage of the symmetry. This modification
is not discussed for brevity.

As in the case of H-plane components [1], we tested the

algorithm using a simple waveguide section as a benchmark.

In particular, the test permitted us to find the effect of the

choice of the parameter < in (32). We verified that the accuracy
increases with increasing <, that demonstrates the convergence
of the algorithm. Furthermore, we observed that the accuracy
was acceptable from values of < as low as 2.5. On the other
hand, since the CPU time increases rapidly with <, a good
trade-off between accuracy and time is to choose <in the range
2.5-4. Note that this range is the same as that considered in
the H-plane case [1].

The algorithm described in this paper and the one de-

scribed in [1] were implemented in a computer code, named

ANAPLAN-W [9].

V. EXAMPLES AND COMPARISON

WITH THE FINITE ELEMENT METHOD

We report the results of some calculations to validate the

algorithm and to show how it can be used in the design

of components of practical interest, obtaining a very good

accuracy with a short computing time (the reported CPU times

refer to a SUN SparcStation 10).

Fig. 4 refers to a 90° mitered E-bend, in the case of a

diagonal mitering (d/b = 0.707) and in the limiting case of
no miter (d/b = 1.41).Using < = 2.5, the frequency response

over the whole band was obtained in 3.1 s and 2.3 s, in the
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db

dlb= 1.41 1s,,1
-1o-

)

(
~oo

~

d
d/b=O .707

-20 ; ,0

b

-30

1.1 1.3 1.5 1.7 flfc

Fig. 4. Normalized frequency response of a mitered E-plane 90° bend. Solid
lines, this method; circles, computed values from [10].

poll 2 I port 4

poll 1 I port 3

Fig. 5. Geometry of the 4-db coupler in WR-75 waveguide considered in
[11]. The dimensions (in mm) are: H = 9.52; t = 6.16; bl = 9.52;
bz = 9.72; dl = 1.7; dz = 7.34; d~ = 3.4; dd = 6.26; and d~ = 4.53.
The width of the waveguides is W’ = 19.05 mm.

two cases, respectively. Our results compare very well with

the mode-matching results reported in [10].
The second example refers to the 4-db branch-guide coupler

of Fig. 5. The dimensions (see caption) were taken from
[11]. Fig. 6 shows an excellent agreement between our results

and those reported in [11]. Considering the double reflection
symmetry and using < = 3.5, the CPU time was only 56 s for
the complete frequency response.

The last example concerns the analysis of the rat-race
directional coupler (see Fig. 7) recently considered in [12].
Fig. 8 shows an excellent agreement between our results and

those reported in [12], obtained by the boundary contour
mode matching method. The experimental results reported

in the same figure differ slightly from the computed ones,
presumably due to losses. Using < = 3.5 and exploiting the

reflection symmetry, the calculation of the complete frequency
response required 195 s. It is noted that in this example the
CPU time was longer than in the previous ones, The reason is
that no part of the boundary fits with Ml, so that o coincides
with the whole boundary and a large number of basis functions
must be considered.

The eigenvalue problem (5) could be solved by many

different algorithms, the most classical one being the finite
element method (FEM) [13]. For this reason, we carried out

many calculations using both the FEM and the BI–RME
method, to check the practical advantage of our approach. To
minimize the CPU time, in each calculation the refinement
of the FEM mesh was just sufficient to obtain an accuracy
comparable to that of our method, and symmetries were
exploited, whenever possible. Furthermore, the sparsity of the
FEM matrices was exploited using the Lanczos’ algorithm [14]
to solve the eigenvalue problem.

db

{
1s131 I

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..L~.---- ------- --------- . ----- ------ ------ ------- ------ ------- -r

+’ t
-50 ~

10.5 11 11.5 12 12.5 GHz

Fig. 6. Scattering parameters of the coupler of Fig. 5. Solid lines, this
method; crosses, computed values from [11]; and circles, measured values
from [11].

port 3

w

,: port2
,,,

,r,
,,,

$., ,,,

~,, ; ,,?”

port 4

Fig. 7. Cross section of the E-plane rat-race 3-db dkectional coupler con-
sidered m [12]. The dimensions (in mm) are: H = 7.9; RI = 5.35; and
R2 = 10.875. The width of the waveguides is W = 15.799.

-2.8 ~, 1s141
o

-3.2- 8:
+ o

1s341o (
-3.6o------------------------------------------------------------
-15

-25

-35‘

12.4 12.8 13.2 13.6 GHz

Fig. 8. Scattering parameters of the rat-race of Fig. 7. Solid lines, thk
method; crosses, computed values from [12]; and circles, measured values
from [12].

Though, in some cases, we found that the two methods
required comparable times, in many cases, the use of the
BI–RME method resulted in a typical time saving of one
order of magnitude. The loss of efficiency of the Lanczos’
algorithm was not related to the complexity of the component,
but, seemingly, to the presence of clusters of eigenvalues. hTote

that these clusters are likely encountered in the analysis of
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practical components (e.g., filters with closely spaced poles).
Incidentally, clustered eigenvalues do not create troubles if
the eigenvalue problem is solved by the procedure described
in [13]; the CPU time, however, increases dramatically. For

instance, in the analysis of the coupler of Fig. 5, which
required the calculation of about 150 eigensolutions, the CPU-
time (referred to a SUN SparcStation 10) was 100 min with
the FEM, exceeding by two orders of magnitude the BI–RME
CPU-time. In conclusion, solving the eigenvalue problem
by our method rather than by the FEM is normally very
convenient.

The FEM is also used in commercial em. solvers, e.g.,

HFSS [15]. Of course, the advantage of our specialized method
over general purpose em. solvers is out of question. For
instance, the time required by our code ANAPLAN-W for the
calculation of the whole frequency response reported in Fig. 6

was about 1/6 of the time required by HFSS for calculating
the S-parameters at a single frequency.

VI. CONCLUSION

The reported theory is a bit complicated, but it results in

a very efficient algorithm for the wideband analysis of E-
plane components. The efficiency depends on the possibility of
determining the poles and the residues of the Y-parameters by
the solution of a linear matrix eigenvalue problem, involving
matrices of reasonably small order. The reported examples
demonstrate that the wideband modeling of complicated struc-
tures can be carried out in times shorter by more than one order
of magnitude, compared to those required by standard FEM
soft ware.

Either for its rapidity and for the possibility of a quick

evaluation of the effect of a deformation on the frequency
response, the method is ideally suited for use in a CAD

code, together with an optimization routine. Using a standard
workstation, optimized design requiring many tens or hundreds
of subsequent analyses can be obtained in reasonable times.
This justifies the effort to write a new BI–RME based code,
instead of merely using a standard em. solver.

Let us

where @P,

APPENDIX A

DEDUCTION OF (18) AND EIGENFUNCTION

EXPANSIONS OF THE GREEN’S FUNCTIONS

consider the vectors

?, ~P~ are given by (29), (30) and

It is well known that these vectors constitute a complete or-

thonormal basis for representing any square-integrable vector
field defined in 0. This implies the “completeness relationship”

P>q P>q

where ~ denotes the unit dyadic and F’, F’ are points of 0.
From this equation we obtain

P>q
Ppq

/
G

where the series are identified with F. and G, because they
are the solutions of (17) and (22) in the form of eigenfunction
expansions. Then we can also write VV’FO = ii= x VVIG x iiZ

and, therefore, placing the source point at the point s’ of o

8G(F, S’)
=ilzxv

8s’

Then. looking at the definition (16) of Uo, we have

Vu(j(F’)= ii.x v
/

aG[,“)j(s’) ds’
c

/

~f(s’) ,=—’iizxv G(F, S’) ~ ds (F< a) (A2)
o

Finally, (21) is obtained from (A2) allowing F’to tend to the
point s of o and taking the normal component of both sides.

It is also noted that, according to (18), the eigenfunction
expansion of F1 is

Equation (9)

APPENDIX B

NORMALIZATION OF q$ AND f

implies (and is implied by)

?@= -X-272+

= ~-wv%)

Therefore, the normalizing condition (11) is equivalent to

-(V24, v’v2~)Q = ~’

where (, )~ denotes the inner product of ,C2(0). Furthermore,
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due to (20) and because V2U. = O in flf, we have

-(v2q5+ u,,V’v’())fl= X2

This equation is converted into (26) observing that, due to the
Neumann boundary conditions satisfied on ~fl by UO, and V2~
and due to the continuity of V2~, t@q5/&t and ~UO/&z on
o, we have

-(V2@, V2V2~)Q = ~ lVV2@12dfl

-(uo,v’v2$h)*=
/

N’(p d~(u; - u;) ~
17

The last integral is converted into the double integral in (26)
substituting the expression of V2 @ obtained from (24), using
(25) and integrating by parts with respect to s.

APPENDIX C

EXPRESSIONS OFW-1 AND v.

From (45) we have

Due to the particular form of W, the inverse can be obtained
by the Sherman-Morrison formula [16], The result is (47).

The kth element of the vector v~ is

because F’ E Z. is outside of sk.

APPENDIX D

POSITTVE DEFINITENESS OF THE MATRIX C

Substituting the eigenfunction expansion of G [see (Al)] in
(42), we immediately obtain

which is positive for any b # O.
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